Entropic Fictitious Play for Mean-Field Optimization Problem

Songbo Wang

Joint work with Zhenjie Ren

École Polytechnique

2022-03-04

(3)

- 2 Calculus on the Space of Probabilities
- 3 First Order Necessary Condition
- 4 Entropic Fictitious Play
- 5 Numerical Tests

< ∃ ►

- 2 Calculus on the Space of Probabilities
- 3 First Order Necessary Condition
- 4 Entropic Fictitious Play
- 5 Numerical Tests

The Problem

- Minimize a known function $F:\mathcal{P}\left(\mathbb{R}^{d}
 ight)
 ightarrow\mathbb{R}$
 - such functions are called "mean-field"...
- Examples:
 - Linear: $F(m) = \int f(x) m(dx)$
 - Quadratic: $F(m) = \frac{1}{2} \int \int k(x, y) m(dx) m(dy)$
 - Fancy: loss function of a neural network
- Entropic regularization: minimize $V^{\sigma} := F + \frac{\sigma^2}{2}H$
 - Fix a reference measure in Gibbs form: $R(dx) = \exp(-U(x)) dx$
 - Entropy defined as $H(m) = H(m|R) = \int \log \frac{dm}{dR} m(dx)$
- Remarks: H(P) is strictly convex, lower semi-continuous in P; gradient descent in W₂ is a mean-field Langevin

- 本間下 本臣下 本臣下 三臣

Example: Single layer neural network

- Problem: minimize $\int \left(y \frac{1}{n} \sum_{i=1}^{n} \beta_i \varphi \left(\alpha_i \cdot z + \gamma_i\right)\right)^2 \nu \left(dy, dz\right)$
- ν is an empirical measure, z feature, y label, φ activation, n number of neurons
- when $n \to \infty$, $\frac{1}{n} \sum_{i=1}^{n} \beta_i \varphi \left(\alpha_i \cdot z + \gamma_i \right) \to \mathbf{E}^m \left[\beta \varphi \left(\alpha \cdot z + \gamma \right) \right]$, $(\beta, \alpha, \gamma) \sim m$
- New problem: minimize $F(m) = \int (y - \mathbf{E}^m [\beta \varphi (\alpha \cdot z + \gamma)])^2 \nu (dy, dz)$
- Lifting dimensions gives nice properties: F is convex
- However, if number of hidden layers $n \ge 2$, F is no longer convex

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2 Calculus on the Space of Probabilities

3 First Order Necessary Condition

- 4 Entropic Fictitious Play
- 5 Numerical Tests

▲ □ ▶ ▲ □ ▶ ▲ □

Calculus on the Space of Probabilities: a Primer

• Motivation: "differentiate" F(m) against m

• Job: define
$$\frac{\delta F}{\delta m}$$
 such that
 $F((1-\varepsilon) m_0 + \varepsilon m_1) = F(m_0) + \varepsilon \left\langle \frac{\delta F}{\delta m}, m_1 - m_0 \right\rangle + o(\varepsilon)$

• Linear case: $F = \int f(x) m(dx) = \langle f, m \rangle$, $\frac{\delta F}{\delta m}$ should be f

Definition

A function $F : \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}$ is called C^1 if there exists a bounded continuous function $\frac{\delta F}{\delta m} : \mathcal{P}(\mathbb{R}^d) \times \mathbb{R}^d \to \mathbb{R}$ such that

$$F(m_1) - F(m_0) = \int \int_0^1 \frac{\delta F}{\delta m} ((1-t) m_0 + tm_1, x) (m_1(dx) - m_0(dx))$$

for all $m_0, m_1 \in \mathcal{P}\left(\mathbb{R}^d\right)$. The function $\frac{\delta F}{\delta m}$ is called functional derivative.

(4回) (4回) (4回) (回)

Calculus on the Space of Probabilities: Remarks

- The functional derivative is defined up to a constant (which may depend on *m*)
 - if $F \in C^1$ has functional derivative $\frac{\delta F}{\delta m}$
 - then $\frac{\delta F}{\delta m}(m,x) + \text{const}(m)$ is also a functional derivative
- Quadratic example:
 - $F(m) = \frac{1}{2} \int \int k(x, y) m(dx) m(dy)$ with k bounded continuous
 - Then $\frac{\delta F}{\delta m}(m,x) = \int k(x,y) m(dy)$ is a possible function derivative
 - ▶ But any $\int k(x, y) m(dy) + G(m)$ with bounded continuous $G : \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}$ is also a functional derivative
- For the function F in interest, we always fix ONE functional derivative $\frac{\delta F}{\delta m}$

• • = • • = •

- 2 Calculus on the Space of Probabilities
- 3 First Order Necessary Condition
- 4 Entropic Fictitious Play
- 5 Numerical Tests

A = >

First Order Necessary Condition

- Let m^* minimizes $V^{\sigma} = F + \frac{\sigma^2}{2}H$, what to say about m^* ?
- Natural candidate: $\frac{\delta V^{\sigma}}{\delta m}(m^{\star},x) = \text{const}$
 - const instead of 0 is due to the ambiguity of functional derivative
- Problem: F is usually C^1 , but H is for most cases not
- Formal calculations:
 - $H(m) = \int \log \frac{dm}{dR} m(dx) = \int m(x) (\log m(x) + U(x)) dx$
 - $\delta H(m) = \delta \int m(x) (\log m(x) + U(x)) dx =$ $\int \delta (m(x) (\log m(x) + U(x))) dx =$ $\int (\log m(x) + 1 + U(x)) \delta m(x) dx$
 - Note $\int 1\delta m(x) dx = 0$ (ambiguity of functional derivative strikes again)
 - Candidate (?): $\frac{\delta H}{\delta m}(m, x) = \log m(x) + U(x)$
 - Does not fit in the definition: m(x) may be unbounded and discontinuous

- (日本) - (1) -

First Order Necessary Condition: Assumptions

Let $p \geq 1$.

Assumption

 $F \in C^1$ and is bounded from below.

Assumption

$$\begin{split} R &= \exp\left(-U\left(x\right)\right) dx \text{ is such that } \mathrm{ess\,inf}_{x \in \mathbb{R}^d} \ U\left(x\right) > -\infty \text{ and} \\ \mathrm{ess\,} \liminf_{x \to \infty} \frac{U(x)}{|x|^p} > 0. \end{split}$$

Definition

$$\mathcal{P}_{p}\left(\mathbb{R}^{d}\right) := \left\{ m \in \mathcal{P}\left(\mathbb{R}^{d}\right) : \int |x|^{p} m(dx) < +\infty \right\}.$$

イロト イポト イヨト イヨト 二日

First Order Necessary Condition: Result

Proposition

If $m^* \in \mathcal{P}(\mathbb{R}^d)$ minimizes $V^{\sigma} = F + \frac{\sigma^2}{2}H$, then $m^* \in \mathcal{P}_p(\mathbb{R}^d)$ and has density w.r.t. Lebesgue. Moreover, the density satisfies

$$\frac{\delta F}{\delta m}(m^{\star},x) + \frac{\sigma^2}{2}\left(\log m^{\star}(x) + U(x)\right) = const, \quad Lebesgue \ a.e.$$

This validates our formal calculations!

- 2 Calculus on the Space of Probabilities
- 3 First Order Necessary Condition
- 4 Entropic Fictitious Play
 - 5 Numerical Tests

→ Ξ →

Entropic Fictitious Play: Motivations

- We look for *m* such that $\frac{\delta F}{\delta m}(m, x) + \frac{\sigma^2}{2}(\log m(x) + U(x)) = \text{const}$
- First order condition (FOC) viewed as fixed point problem:
 - Define \hat{m} by $\frac{\delta F}{\delta m}(m, x) + \frac{\sigma^2}{2} (\log \hat{m}(x) + U(x)) = \text{const}$
 - ► In Gibbs form: $\hat{m}(x) = \frac{1}{Z} \exp\left(-U(x) \frac{2}{\sigma^2} \frac{\delta F}{\delta m}(m, x)\right)$
 - ▶ the mapping $m \mapsto \hat{m}$ has fixed point m^* iff m^* satisfies FOC
 - resembles Nash equilibrium
- Motivated, we consider the dynamics:

$$\frac{dm_t}{dt} = \alpha \left(\hat{m}_t - m_t \right)$$

- α is a positive constant
- resembles fictitious play in game theory

• • = • • = •

Wasserstein Distance

Let $p \ge 1$.

Definition

(M, d) metric space. *p*-Wasserstein is a distance between Borel probabilities in $\mathcal{P}_{p}(M)$ such that

$$\mathcal{W}_{p}(P,Q) = \inf_{X \sim P, Y \sim Q} \mathbf{E} \left[d \left(X, Y \right)^{p} \right]^{\frac{1}{p}}.$$

The inf is taken over all possible "couplings" of P and Q.

Fact

 \mathcal{W}_p metrizes the weak topology with convergent p-moment of \mathcal{P}_p , and $(\mathcal{P}_p, \mathcal{W}_p)$ is complete.

・ 同 ト ・ ヨ ト ・ ヨ ト

Entropic Fictitious Play: Wellposedness

From now on we fix a $1 \le p \le 2$.

Assumption

 $\frac{\delta F}{\delta m}(m, x)$ is jointly Lipschitz in m, x, where the difference of m is measured by the *p*-Wasserstein distance W_p .

Proposition

The dynamics

$$\frac{dm_t}{dt} = \alpha \left(\hat{m}_t - m_t \right) \tag{1}$$

is wellposed in $\mathcal{P}_{p}(\mathbb{R}^{d})$, i.e. there exists a unique dynamics in $C([0, +\infty); (\mathcal{P}_{p}, \mathcal{W}_{p}))$ solving eq. (1) for any initial value $m_{0} \in \mathcal{P}_{p}$. Moreover we have continuous dependency on m_{0} .

<ロト <問ト < 注ト < 注ト = 注

Entropic Fictitious Play: Further Regularities

Proposition

If in addition to $m_0 \in \mathcal{P}_p$, the initial value m_0 has density w.r.t. Lebesgue, then the dynamics $(m_t)_t$ has also density for all t > 0. Moreover the function $t \mapsto m_t$ is C^1 and satisfies

$$\frac{dm_{t}(x)}{dt} = \alpha \left(\hat{m}_{t}(x) - m_{t}(x) \right)$$

for all x and all t > 0.

- B - - B

Entropic Fictitious Play: Convergence

- We would like to show m_t converges to some m^* satisfying the first order condition
- Formal calculations show that V^{σ} serves as a Lyapunov function

$$\frac{dV^{\sigma}\left(m_{t}\right)}{dt}=-\frac{\alpha\sigma^{2}}{2}\left(H\left(m_{t}|\hat{m}_{t}\right)+H\left(\hat{m}_{t}|m_{t}\right)\right)$$

- At least formally, V^{σ} decreases along $(m_t)_t$
- Since V^{σ} is finite, we hope $\lim_{t \to \infty} \frac{dV^{\sigma}(m_t)}{dt} = \lim_{t \to \infty} -\frac{\alpha \sigma^2}{2} \left(H(m_t | \hat{m}_t) + H(\hat{m}_t | m_t) \right) = 0$
- If we suppose $m_t o$ some m^\star , by continuity of $\cdot \mapsto \hat{\cdot}, \ \hat{m}_t \to \hat{m^\star}$
- Using again the semi-continuity of $H(\cdot|\cdot)$, we wish to have $H(m^*|\hat{m^*}) = H(\hat{m^*}|m^*) = 0$, i.e. $m^* = \hat{m}^*$, FOC satisfied

• • = • • = • =

Entropic Fictitious Play: Convergence

If we suppose additionally

Assumption

The mapping $\cdot \mapsto \hat{\cdot}$ admits unique fixed point m^* .

Assumption

The initial condition $m_0\in\mathcal{P}_{p'}\left(\mathbb{R}^d\right)$ for some p'>p and have finite entropy $H(m_0)<+\infty$

then we have

Theorem (Convergence)

 $\lim_{t\to\infty} W_p(m_t, m^*) = 0$, and $\lim_{t\to\infty} m_t(x) = m^*(x)$ for x a.e. The time derivative satisfies

$$\frac{dV^{\sigma}\left(m_{t}\right)}{dt}=-\frac{\alpha\sigma^{2}}{2}\left(H\left(m_{t}|\hat{m}_{t}\right)+H\left(\hat{m}_{t}|m_{t}\right)\right),$$

and its value also converges: $\lim_{t\to\infty} V^{\sigma}(m_t) = V^{\sigma}(m^{\star}).$

Entropic Fictitious Play: Convex case

Assumption

- *F* is convex and C^2 , i.e. $\frac{\delta F}{\delta m} \in C^1$.
 - $V^{\sigma} = F + \frac{\sigma^2}{2}H$ is strictly convex, since H is strictly convex
 - Uniqueness of fixed point m^* of $\cdot \mapsto \hat{\cdot}$ follows automatically
 - Rate of convergence can also be obtained:

Theorem

$$0 \leq V^{\sigma}\left(m_{t}\right) - V^{\sigma}\left(m^{\star}\right) \leq \frac{\sigma^{2}}{2}H\left(m_{0}|\hat{m}_{0}\right)e^{-\alpha t}.$$

• • = • • = •

- 1 Mean-Field Optimization Problem
- 2 Calculus on the Space of Probabilities
- 3 First Order Necessary Condition
- 4 Entropic Fictitious Play
- 5 Numerical Tests

(4) (3) (4) (4) (4)

< 円

Numerical Test: Samping \hat{m}

- \hat{m} defined in Gibbs form: $\hat{m}(x) = \frac{1}{Z} \exp\left(-U(x) \frac{2}{\sigma^2} \frac{\delta F}{\delta m}(m, x)\right)$
- To sample it, we note that it is the unique invariant measure of the Langevin dynamics

$$dX_{t} = -\left(\nabla \frac{\delta F}{\delta m}(m, x) + \frac{\sigma^{2}}{2}U(x)\right)dt + \sigma dB_{t}$$

- under conditions on U, F...
- Langevin dynamics allows us to compute \hat{m}

▲ 国 ▶ | ▲ 国 ▶

Numerical Test: Result

We learn a 1d function $y = \cos 2\pi z, z \in [0, 1]$

2022-03-04 23 / 23

< □ > < 同 > < 回 > < 回 > < 回 >